Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.103
Filtrar
1.
Virol J ; 21(1): 82, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589848

RESUMO

Influenza and SARS-CoV-2 are two major respiratory pathogens that cocirculate in humans and cause serious illness with the potential to exacerbate disease in the event of co-infection. To develop a bivalent vaccine, capable of protecting against both infections, we inserted the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein into hemagglutinin (HA) molecule or into the open reading frame of the truncated nonstructural protein 1 (NS1) of live attenuated influenza vaccine (LAIV) virus and assessed phenotypic characteristics of the rescued LAIV-RBD viruses, as well as their immunogenicity in mouse and Syrian hamster animal models. A panel of 9 recombinant LAIV-RBD viruses was rescued using the A/Leningrad/17 backbone. Notably, only two variants with RBD insertions into the HA molecule could express sufficient quantities of RBD protein in infected MDCK cells. Intranasal immunization of mice induced high levels of anti-influenza antibody responses in all chimeric LAIV-RBD viruses, which was comparable to the LAIV virus vector. The RBD-specific antibody responses were most pronounced in the variant expressing RBD194 fragment as a chimeric HA protein. This candidate was further tested in Syrian hamsters and was shown to be immunogenic and capable of protecting animals against both infections.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Glicoproteína da Espícula de Coronavírus , Humanos , Animais , Camundongos , Vacinas contra Influenza/genética , SARS-CoV-2/genética , Vacinas contra COVID-19 , Vacinas Combinadas , Anticorpos Antivirais , Hemaglutininas
2.
Hum Vaccin Immunother ; 20(1): 2336357, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38619079

RESUMO

Influenza remains a public health threat, partly due to suboptimal effectiveness of vaccines. One factor impacting vaccine effectiveness is strain mismatch, occurring when vaccines no longer match circulating strains due to antigenic drift or the incorporation of inadvertent (eg, egg-adaptive) mutations during vaccine manufacturing. In this review, we summarize the evidence for antigenic drift of circulating viruses and/or egg-adaptive mutations occurring in vaccine strains during the 2011-2020 influenza seasons. Evidence suggests that antigenic drift led to vaccine mismatch during four seasons and that egg-adaptive mutations caused vaccine mismatch during six seasons. These findings highlight the need for alternative vaccine development platforms. Recently, vaccines based on mRNA technology have demonstrated efficacy against SARS-CoV-2 and respiratory syncytial virus and are under clinical evaluation for seasonal influenza. We discuss the potential for mRNA vaccines to address strain mismatch, as well as new multi-component strategies using the mRNA platform to improve vaccine effectiveness.


Assuntos
Vacinas contra Influenza , Influenza Humana , Vírus Sincicial Respiratório Humano , Humanos , Vacinas contra Influenza/genética , Vacinas de mRNA , Estações do Ano , Influenza Humana/prevenção & controle , RNA Mensageiro/genética
3.
Front Immunol ; 15: 1277447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633245

RESUMO

Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.


Assuntos
Coinfecção , Vacinas contra Influenza , Superinfecção , Chlorocebus aethiops , Animais , Gatos , Humanos , Vacinas contra Influenza/genética , Vírus da Varíola Bovina/genética , Células Vero , Vírus Vaccinia , Vacinas Sintéticas/genética , Sequenciamento Completo do Genoma
4.
Nat Commun ; 15(1): 2546, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514647

RESUMO

Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Vacinas contra Influenza/genética , Vírus da Influenza A Subtipo H3N2/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Mutação , Estações do Ano
5.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305155

RESUMO

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Assuntos
Virus da Influenza A Subtipo H5N1 , 60550 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vírus da Parainfluenza 5 , Animais , Humanos , Camundongos , Furões/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Imunidade Humoral , Imunidade nas Mucosas , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , 60550/química , 60550/classificação , 60550/genética , 60550/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Influenza Aviária/virologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , 60514/métodos , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/imunologia , Vírus da Parainfluenza 5/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Administração Intranasal , Aves Domésticas/virologia , Imunoglobulina A/imunologia , Linfócitos T/imunologia
6.
Front Cell Infect Microbiol ; 14: 1243586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384303

RESUMO

Introduction: Vaccination is still the primary means for preventing influenza virus infection, but the protective effects vary greatly among individuals. Identifying individuals at risk of low response to influenza vaccination is important. This study aimed to explore improved strategies for constructing predictive models of influenza vaccine response using gene expression data. Methods: We first used gene expression and immune response data from the Immune Signatures Data Resource (IS2) to define influenza vaccine response-related transcriptional expression and alteration features at different time points across vaccination via differential expression analysis. Then, we mapped these features to single-cell resolution using additional published single-cell data to investigate the possible mechanism. Finally, we explored the potential of these identified transcriptional features in predicting influenza vaccine response. We used several modeling strategies and also attempted to leverage the information from single-cell RNA sequencing (scRNA-seq) data to optimize the predictive models. Results: The results showed that models based on genes showing differential expression (DEGs) or fold change (DFGs) at day 7 post-vaccination performed the best in internal validation, while models based on DFGs had a better performance in external validation than those based on DEGs. In addition, incorporating baseline predictors could improve the performance of models based on days 1-3, while the model based on the expression profile of plasma cells deconvoluted from the model that used DEGs at day 7 as predictors showed an improved performance in external validation. Conclusion: Our study emphasizes the value of using combination modeling strategy and leveraging information from single-cell levels in constructing influenza vaccine response predictive models.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Humanos , Vacinas contra Influenza/genética , Vacinação , Anticorpos Antivirais
7.
Hum Vaccin Immunother ; 20(1): 2292381, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193304

RESUMO

Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas contra Influenza/genética , Epitopos de Linfócito B , DNA , Orthomyxoviridae/genética
8.
ACS Synth Biol ; 13(2): 546-557, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38259154

RESUMO

Influenza A virus (IAV) is a negative-sense RNA virus that causes seasonal infections and periodic pandemics, inflicting huge economic and human costs on society. The current production of influenza virus for vaccines is initiated by generating a seed virus through the transfection of multiple plasmids in HEK293 cells followed by the infection of seed viruses into embryonated chicken eggs or cultured mammalian cells. We took a system design and synthetic biology approach to engineer cell lines that can be induced to produce all viral components except hemagglutinin (HA) and neuraminidase (NA), which are the antigens that specify the variants of IAV. Upon the transfection of HA and NA, the cell line can produce infectious IAV particles. RNA-Seq transcriptome analysis revealed inefficient synthesis of viral RNA and upregulated expression of genes involved in host response to viral infection as potential limiting factors and offered possible targets for enhancing the productivity of the synthetic cell line. Overall, we showed for the first time that it was possible to create packaging cell lines for the production of a cytopathic negative-sense RNA virus. The approach allows for the exploitation of altered kinetics of the synthesis of viral components and offers a new method for manufacturing viral vaccines.


Assuntos
Células Artificiais , Vírus da Influenza A , Vacinas contra Influenza , Animais , Humanos , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas , Mamíferos/metabolismo
9.
Emerg Microbes Infect ; 13(1): 2290838, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38044872

RESUMO

Classic chimeric hemagglutinin (cHA) was designed to induce immune responses against the conserved stalk domain of HA. However, it is unclear whether combining more than one HA head domain onto one stalk domain is immunogenic and further induce immune responses against influenza viruses. Here, we constructed numerous novel cHAs comprising two or three fuzed head domains from different subtypes grafted onto one stalk domain, designated as cH1-H3, cH1-H7, cH1-H3-H7, and cH1-H7-H3. The three-dimensional structures of these novel cHAs were modelled using bioinformatics simulations. Structural analysis showed that the intact neutralizing epitopes were exposed in cH1-H7 and were predicted to be immunogenic. The immunogenicity of the cHAs constructs was evaluated in mice using a chimpanzee adenoviral vector (AdC68) vaccine platform. The results demonstrated that cH1-H7 expressed by AdC68 (AdC68-cH1-H7) induced the production of high levels of binding antibodies, neutralizing antibodies, and hemagglutinin inhibition antibodies against homologous pandemic H1N1, drifted seasonal H1N1, and H7N9 virus. Moreover, vaccinated mice were fully protected from a lethal challenge with the aforementioned influenza viruses. Hence, cH1-H7 cHAs with potent immunogenicity might be a potential novel vaccine to provide protection against different subtypes of influenza virus.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Vacinas contra Influenza/genética , Anticorpos Antivirais , Vírus da Influenza A Subtipo H1N1/genética , Hemaglutininas , Anticorpos Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza
10.
Emerg Microbes Infect ; 13(1): 2284301, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37966272

RESUMO

Due to the fact that many avian influenza viruses that kill chickens are not lethal to ducks, farmers are reluctant to use avian influenza inactivated vaccines on ducks. Large numbers of unvaccinated ducks play an important role in the transmission of avian influenza viruses from wild birds to domestic poultry, creating a substantial challenge to vaccination strategies for avian influenza control. To solve this problem, we constructed a recombinant duck enteritis virus (DEV), rDEV-dH5/H7, using a live attenuated DEV vaccine strain (vDEV) as a vector. rDEV-dH5/H7 carries the hemagglutinin gene of two H5 viruses [GZ/S4184/17 (H5N6) (clade 2.3.4.4 h) and LN/SD007/17 (H5N1) (clade 2.3.2.1d)] and an H7 virus [GX/SD098/17 (H7N9)]. These three hemagglutinin genes were stably inherited in rDEV-dH5/H7 and expressed in rDEV-dH5/H7-infected cells. Animal studies revealed that rDEV-dH5/H7 and vDEV induced similar neutralizing antibody responses and protection against lethal DEV challenge. Importantly, rDEV-dH5/H7 induced strong and long-lasting hemagglutinin inhibition antibodies against different H5 and H7 viruses and provided complete protection against challenges with homologous and heterologous highly pathogenic H5 and H7 influenza viruses in ducks. Our study shows that rDEV-dH5/H7 could serve as an ideal live attenuated vaccine to protect ducks against infection with lethal DEV and highly pathogenic avian influenza viruses.


Assuntos
Enterite , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Animais , Patos , Hemaglutininas , Galinhas , Virus da Influenza A Subtipo H5N1/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vetores Genéticos
11.
Vopr Virusol ; 68(5): 385-393, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38156573

RESUMO

BACKGROUND: Data on the disease burden and circulation patterns of influenza B virus lineages for Iran are limited. OBJECTIVE: This review aims to describe the pattern of influenza B occurrence in Iran, comparing it with the proposed vaccine strains and determining the match and mismatch with the prescribed vaccine annually. METHODS: Various sources were used to retrieve information of the data; such as information from an online search of databases such as FluNet, GISAID, and NCBI. After extracting protein sequence records in GISAID, sequence alignment with vaccine strain and construction of a phylogenetic tree were performed. Subsequently, categories of the registered circulating strains were evaluated for matching with the vaccine strains. RESULTS: Of the total registered influenza-positive samples, 20.21% were related to influenza B virus. The phylogenic tree was designed based on 43 samples registered in the GISAID database; 76.74 and 23.25% sequences were of Yamagata and Victoria lineages, respectively. The most prevalent influenza B virus strains circulating during the study years belonged to the Yamagata lineage. In general, the match of the influenza B virus predominant circulating strains with administrated vaccines was observed in Iran. However, a high level of mismatch between the vaccine strain and Iranian isolates was identified in 2016‒2017. CONCLUSION: The review of match and mismatch in influenza vaccine in order to improve the composition of the prescribed vaccine in each region is very important because the vaccine efficacy decreased when the strain included in vaccine did not match the circulating epidemic strain.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Irã (Geográfico)/epidemiologia , Filogenia , Vacinas contra Influenza/genética , Variação Genética , Organização Mundial da Saúde
12.
Sci Rep ; 13(1): 22342, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102198

RESUMO

Influenza viruses undergo rapid evolutionary changes, which requires continuous surveillance to monitor for genetic and potential antigenic changes in circulating viruses that can guide control and prevention decision making. We sequenced and phylogenetically analyzed A(H1N1)pdm09 virus genome sequences obtained from specimens collected from hospitalized patients of all ages with or without pneumonia between 2009 and 2018 from seven sentinel surveillance sites across Kenya. We compared these sequences with recommended vaccine strains during the study period to infer genetic and potential antigenic changes in circulating viruses and associations of clinical outcome. We generated and analyzed a total of 383 A(H1N1)pdm09 virus genome sequences. Phylogenetic analyses of HA protein revealed that multiple genetic groups (clades, subclades, and subgroups) of A(H1N1)pdm09 virus circulated in Kenya over the study period; these evolved away from their vaccine strain, forming clades 7 and 6, subclades 6C, 6B, and 6B.1, and subgroups 6B.1A and 6B.1A1 through acquisition of additional substitutions. Several amino acid substitutions among circulating viruses were associated with continued evolution of the viruses, especially in antigenic epitopes and receptor binding sites (RBS) of circulating viruses. Disease severity declined with an increase in age among children aged < 5 years. Our study highlights the necessity of timely genomic surveillance to monitor the evolutionary changes of influenza viruses. Routine influenza surveillance with broad geographic representation and whole genome sequencing capacity to inform on prioritization of antigenic analysis and the severity of circulating strains are critical to improved selection of influenza strains for inclusion in vaccines.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Filogenia , Quênia/epidemiologia , Estações do Ano , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/genética
13.
Sci Adv ; 9(44): eabp9185, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922357

RESUMO

The seasonal influenza (flu) vaccine is designed to protect against those influenza viruses predicted to circulate during the upcoming flu season, but identifying which viruses are likely to circulate is challenging. We use features from phylogenetic trees reconstructed from hemagglutinin (HA) and neuraminidase (NA) sequences, together with a support vector machine, to predict future circulation. We obtain accuracies of 0.75 to 0.89 (AUC 0.83 to 0.91) over 2016-2020. We explore ways to select potential candidates for a seasonal vaccine and find that the machine learning model has a moderate ability to select strains that are close to future populations. However, consensus sequences among the most recent 3 years also do well at this task. We identify similar candidate strains to those proposed by the World Health Organization, suggesting that this approach can help inform vaccine strain selection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Humanos , Filogenia , Estações do Ano , Influenza Humana/prevenção & controle , Vacinas contra Influenza/genética
14.
J Virol ; 97(11): e0110123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37916835

RESUMO

IMPORTANCE: Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.


Assuntos
Proteção Cruzada , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Anticorpos Antivirais , Furões , Influenza Aviária , Vacinas contra Influenza/genética , Vacinas Atenuadas , Infecções por Orthomyxoviridae/prevenção & controle
15.
ACS Nano ; 17(23): 23545-23567, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988765

RESUMO

The development of a cross-protective pan-influenza A vaccine remains a significant challenge. In this study, we designed and evaluated single-component self-assembling protein nanoparticles (SApNPs) presenting the conserved extracellular domain of matrix protein 2 (M2e) as vaccine candidates against influenza A viruses. The SApNP-based vaccine strategy was first validated for human M2e (hM2e) and then applied to tandem repeats of M2e from human, avian, and swine hosts (M2ex3). Vaccination with M2ex3 displayed on SApNPs demonstrated higher survival rates and less weight loss compared to the soluble M2ex3 antigen against the lethal challenges of H1N1 and H3N2 in mice. M2ex3 I3-01v9a SApNPs formulated with a squalene-based adjuvant were retained in the lymph node follicles over 8 weeks and induced long-lived germinal center reactions. Notably, a single low dose of M2ex3 I3-01v9a SApNP formulated with a potent adjuvant, either a Toll-like receptor 9 (TLR9) agonist or a stimulator of interferon genes (STING) agonist, conferred 90% protection against a lethal H1N1 challenge in mice. With the ability to induce robust and durable M2e-specific functional antibody and T cell responses, the M2ex3-presenting I3-01v9a SApNP provides a promising pan-influenza A vaccine candidate.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Suínos , Vacinas contra Influenza/genética , Vírus da Influenza A Subtipo H3N2 , Proteção Cruzada , Adjuvantes Imunológicos , Infecções por Orthomyxoviridae/prevenção & controle , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
16.
Vaccine ; 41(47): 6941-6951, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37884412

RESUMO

Influenza A virus in swine (IAV-S) continues to cause significant negative impact to both sows and growing pigs. The viral hemagglutinin (HA) and neuraminidase (NA) genes continue to evolve with HA diversifying at a faster rate than NA. Depending on country, whole inactivated virus (WIV) commercial and autogenous vaccines, as well as veterinary prescription vaccines targeting HA, are currently available. The use of these vaccines is focused on reducing virus and clinical signs in sows and to provide HA-specific maternally derived antibodies (MDA) to their suckling pigs. The deficiency in this strategy is that HA-MDA does not persist long enough to protect pigs through their growing phase from infection, and HA-MDA can interfere with effective pig immunization. This study evaluated the immunogenicity and efficacy of an adjuvanted, quadrivalent RNA Particle vaccine (Sequivity NA), currently licensed as Sequivity® IAV-S NA. This vaccine was formulated based on four NA antigens representing the major NA clades of IAV subtypes H1N1, H1N2 and H3N2 circulating in swine herds in the United States. In a series of trials, pigs were vaccinated twice, at three days and three weeks of age (WOA), followed by challenge with either homologous or heterologous IAV strains at 8 or 15 WOA. The Sequivity NA vaccine induced robust serum NA inhibition (NI) antibody and protected against IAV-S strains with homologous and heterologous NA to that of the vaccine. The magnitude and duration of nasal shedding was reduced in vaccinated-pigs challenged with either homologous or heterologous virus within the same NA clade. This NA-based RNA Particle vaccine avoids the known impact of HA-MDA on pig vaccination and provides a new tool to successfully reduce IAV-induced disease in the pig population.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Feminino , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Neuraminidase/genética , Vírus da Influenza A Subtipo H3N2 , Vacinas Combinadas , Vacinas contra Influenza/genética , Anticorpos , Anticorpos Antivirais
17.
Artigo em Inglês | MEDLINE | ID: mdl-37817300

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 12,073 human influenza positive samples during 2022. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. In 2022, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for 77% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically and genetically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2022. Of 3,372 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Feminino , Humanos , Austrália/epidemiologia , Galinhas , Farmacorresistência Viral/genética , Farmacorresistência Viral/imunologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Oseltamivir/farmacologia , Organização Mundial da Saúde , Zanamivir/farmacologia , Antivirais/farmacologia
18.
Emerg Microbes Infect ; 12(2): 2256422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671994

RESUMO

Influenza virus is a prominent cause of respiratory illness in humans. Current influenza vaccines offer strain-specific immunity, while provide limited protection against drifted strains. Broad-spectrum influenza vaccines can induce broad and long-term immunity, and thus are regarded as a future direction for the development of next-generation influenza vaccines. In this study, we have conceptualized a novel mRNA-based multi-antigen influenza vaccine consisting of three conserved antigens of influenza A virus, including the ectodomain of the M2 ion channel (M2e), the long alpha helix of haemagglutinin stalk region (LAH), and nucleoprotein (NP). The vaccine design aims to enhance its potency and promote the development of a future broad-spectrum influenza vaccine. Our mRNA-based vaccine demonstrated potent humoral and cellular responses throughout the time points of the murine model, inducing viral neutralizing antibodies, antibody-dependent cell cytotoxicity effect mediating antibodies and cross-reactive CD8+ T cell immune responses. The vaccine conferred broad protection against H1N1, H3N2, and H9N2 viruses. Moreover, the single-cell transcriptional profiling of T cells in the spleens of vaccinated mice revealed that the mRNA-based vaccine significantly promoted CD8+ T cells and memory T cells by prime-boost immunization. Our results suggest that the mRNA-based influenza vaccine encoding conserved proteins is a promising approach for eliciting broadly protective humoral and cellular immunity against various influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Vacinas contra Influenza/genética , Linfócitos T CD8-Positivos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/prevenção & controle
19.
Emerg Microbes Infect ; 12(2): 2231573, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37394992

RESUMO

Highly contagious respiratory illnesses like influenza and COVID-19 pose serious risks to public health. A two-in-one vaccine would be ideal to avoid multiple vaccinations for these diseases. Here, we generated a chimeric receptor binding domain of the spike protein (S-RBD) and hemagglutinin (HA)-stalk-based vaccine for both SARS-CoV-2 and influenza viruses. The S-RBD from SARS-CoV-2 Delta was fused to the headless HA from H1N1 (H1Delta), creating a chimera that forms trimers in solution. The cryo-electron microscopy structure of the chimeric protein complexed with the RBD-targeting CB6 and the HA-stalk-targeting CR9114 antibodies shows that the trimeric protein is stable and accessible for neutralizing antibody binding. Immunization with the vaccine elicited high and long-lasting neutralizing antibodies and effectively protected mice against the challenges of lethal H1N1 or heterosubtypic H5N8, as well as the SARS-CoV-2 Delta or Omicron BA.2 variants. Overall, this study offers a two-in-one universal vaccine design to combat infections caused by both SARS-CoV-2 variants of concern and influenza viruses.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Camundongos , Animais , Humanos , Hemaglutininas , Vacinas contra COVID-19 , Vírus da Influenza A Subtipo H1N1/genética , Microscopia Crioeletrônica , Anticorpos Antivirais , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra Influenza/genética , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
20.
ACS Nano ; 17(14): 13474-13487, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37395606

RESUMO

The development of a universal influenza vaccine to control public health threats from circulating and emerging influenza viruses is highly desirable. Here we report an intranasal multivalent epitope-based nanoparticle vaccine with broad protection against divergent influenza A and B viruses. Three highly conserved epitopes consisting of the A α-helix of hemagglutinin (H), the ectodomain of matrix protein 2 (M) and the HCA-2 of neuraminidase (N) are presented on a self-assembling recombinant human heavy chain ferritin cage (F) to generate the HMNF nanoparticle. Intranasal immunization of mice with HMNF mobilized potent immune responses, including high levels of antigen-specific antibodies and T cell-mediated responses, which exhibited cross-reactivity to various antigen mutations. Vaccination with HMNF conferred full protection against lethal challenge with divergent influenza A and B viruses. The broad protection of HMNF nanoparticles could be attributed to the synergistic function of antibodies and T cells. Moreover, the induced immune responses are long-lasting, and protection is maintained six months after vaccination. Our constructed HMNF nanoparticle can serve as a promising candidate for a universal influenza vaccine.


Assuntos
Vacinas contra Influenza , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Humanos , Vacinas contra Influenza/genética , Epitopos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...